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Inverse problems
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chemical reaction networks

From indirect observations to physical parameters and models…

source inversion
(environmental dispersion)



Inverse problems

! 

G(m) " d

model parameters/inputs

observed data

Given a set of data d, estimate m

forward operator
e.g., a system of PDEs;

computationally intensive!

• Typically ill-posed:
– Issues of existence, uniqueness, and stability

(⇒ sensitivity to noise)



• Bayesian inference for inverse problems
– The model m is now a random variable/field
– Apply Bayes’ theorem:

! 

p m d( ) =
p d m( )p m( )

p d m( )p m( )dm"
posterior
density

likelihood
function L(m)

prior
density

evidence
(here just a normalizing const)

Statistical approaches

• The posterior density                         is the full Bayesian solution to
the inverse problem
– Not just a single value for m, but a probability density
– A complete description of uncertainty

! 

" m( ) # p m d( )



Bayesian inference for IPs

• Likelihood function:
(how well does the model support the data?)
– Example: deterministic forward problem G(m)

additive measurement + model error η ∼ pη(·)

– Simple choice: η ∼ N(0,σ2I)

! 

L m( ) = p" G(m) # d( )

! 

d =G(m) +" #
! 

L m( ) " p d m( )! 

p m d( ) =
p d m( )p m( )

p d m( )p m( )dm"
posterior
density

likelihood
function L(m)

prior
density



• Prior pm(m):
– Incorporates additional information (e.g., physical constraints,

smoothness, structure, expert judgment)
– No regularization parameter per se

• Use shorthand:

• Useful extension— hyperparameters θ, φ:

Bayesian inference for IPs

! 

"
m d

m( )# p d m( )pm m( )

! 

p m d( ) =
p d m( )p m( )

p d m( )p m( )dm"
posterior
density

likelihood
function L(m)

prior
density
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Example: source inversion
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"c # ˆ n = 0 on $%, c(x,0) = 0

source described by location parameters
m = χ, active for t ∈ [0,0.2];
strength s, width σ

Data from M sensors on a regular
grid; d = {ct1, ct2, …}i=1…M

Ω = [0,1]×[0,1]

Ω

→  Measurement noise/error: ηi ∼ N(0,0.4)
      Priors:  χ = (m0,m1) ∼ U(0,1)

I. Transient diffusion problem—



Posterior density

• Posterior reflects data noise/error, length & time scales of
measurement, and the underlying physical process:

measure at t = {0.1, 0.2}
η ~ N(0, 0.4)

measure at t = {0.3}
η ~ N(0, 0.4)

measure at t = {0.1, 0.2}
η ~ N(0, 0.8)

measure at t = {0.3}; η ~ N(0, 0.4)
11x11 sensor grid



Advection-diffusion problems

• Vary the velocity; measure always at the same fraction of the diffusion
timescale (t/td=0.10); source active for t/td ∈ [0, 0.05]

∴ posterior broadens in the streamwise direction for ts ≥  tc

Pe=20
ts/tc = 1

Pe=1
ts/tc= 0.05

Pe=0.1
ts/tc= 0.005



Outline

1 Bayesian approach to inverse problems
2 Accelerating Bayesian inference via stochastic

spectral methods
3 Inference of spatiotemporal fields
4 Conclusions



Computational challenges

• What information to extract from the posterior π(m|d)?
– Posterior means, variances, higher moments:

– Marginal distributions π(mi)

• Use quadrature/cubature or sampling (MCMC)
– Posterior evaluations are expensive

(forward problems are simulation-based!)
– Posteriors are often high-dimensional

• Similar challenges faced in “forward” UQ…
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E" f = f m( )" m( )dm#

model
(G)

input or model parameter
prediction



Spectral rep’n of random variables

• Efficient UQ relies on the polynomial chaos expansion (PCe)
– Let X be a real second-order random process, defined on a probability

space

PCe:

–               are i.i.d. random variables (e.g., Gaussians)
–               are orthogonal multivariate polynomials (e.g., Hermite)
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• Orthogonality wrpt measure on ξ determines polynomial (Ψ) family:
(Hermite + Gaussian, Legendre + uniform, Laguerre + Gamma, etc)

• Truncate at polynomial order p
& “stochastic dimension” n :
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" size of basis: P +1=
(n + p)!

n!p!



Propagating uncertainty w/PCe

⇒ Given a PCe for X:

+ governing equations

 How to obtain a PCe of Y?

• Galerkin method (“intrusive projection”):
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⇒ leads to P+1 coupled problems (reformulation of
governing equations). But solve only ONCE!

= efficient propagation of uncertainty from X to Y



Propagating uncertainty w/PCe

• ODE example:

– Introduce PCes:

– Apply Galerkin projection:

where                                      are known coefficients

• In practice— elementary functions implemented in a library for
“stochastic arithmetic.” Pseudo-spectral construction & other approaches
for non-polynomial funcs. [Debusschere et al SIAM 2004]
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PCe in Bayesian inference

• Write a PCe for m ~ prior
• Propagate prior uncertainty through the forward problem

 result:         , a stochastic spectral representation of forward model
predictions   → (compute gjk only once!) ←

 Use this as a surrogate for the forward model in the likelihood function.
No repeated forward problem solutions!
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PCe in Bayesian inference

• Likelihood function with PCe:

• More generally: PCe is a change of variables m = g(ξ):

leads to

–             is a surrogate posterior

– g is an invertible/differentiable map from             to the range of m
– Choice of g:  do not require m = g(ξ) ~ prior

What is the uncertainty that you should propagate through a
forward model in order to invert it?
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Stochastic spectral solution

• Compare times: sensor placement, experimental design…

• Return to 2-D source inversion problem—
– Propagate uniform prior on source location;

examine probability density of model prediction u(x=0, y=0, t):

t = 0.05 t = 0.15



Posterior density

p=3 (dashed) vs direct (solid)

• 3×3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).



Posterior density

• 3×3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).

p=6 (dashed) vs direct (solid)



Posterior density

• 3×3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).

p=9 (dashed) vs direct (solid)



Posterior density

• 3×3 grid of sensors; measure at t = {0.05, 0.15}; d from noisy
observations of a source at (x,y) = (0.25,0.75).

convergence:
Kullback-Leibler distance

versus p
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Speedup in sampling

• Total computational time vs number of samples

Per-sample cost
reduced by 3–4
orders of
magnitude!!



Outline

1 Bayesian approach to inverse problems
2 Accelerating Bayesian inference via stochastic

spectral methods
3 Inference of spatiotemporal fields

• Prior models, regularization, and dimensionality reduction

4 Conclusions



Bayesian IPs for spat-temp fields

• Let M(x) be a field quantity,
• Bayesian approach:

– M(x,ω) is a stochastic process
– We want to explore/evaluate p(M|d)

• Example:

– M(x) = log ν(x) is an unknown log-diffusivity; infer from a few
sources/sensors in the domain D = [0,1]
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GP priors and regularization

• Forward problem                        is nonlinear
• Estimation of ν(x) from sparse data is ill-posed
• Encode additional information on M(x) = log ν(x) in the prior

distribution:
– Gaussian process prior
– Great flexibility via choice of covariance kernel
– Here, employ a stationary Gaussian covariance kernel:

– Magnitude θ of the prior covariance is a hyperparameter:

– MAP estimate with GP prior equivalent to introducing RKHS-norm
regularization penalty with reproducing kernel          = covariance
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Bayes + PCe approach
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M(x,ω)

• Representing M(x):
– Should we just use Mn (e.g., pixels)?
– How many stochastic degrees of

freedom in M? Minimize
dimensionality?

– What basis functions?

• Big picture of the computational approach:
– Endow M(x,ω) with an appropriate prior and hyperpriors

(Gaussian process prior + …)
– PCe to propagate prior uncertainty in M(x) through the forward model
– MCMC sampling from the surrogate posterior



Dimensionality reduction

• Let 
• Introduce the Karhunen-Loève expansion & truncate:

– λi and φi(x) are eigenvalues/eigenfunctions of C(x1,x2)

– ci ∼ N(0,1)

• Transform the inverse problem (dim = K << n)

– ci ∼ N(0,1) is now the prior on c
– Obtain posterior density p(c|d)

• With hyperparameter: prior is ci ∼ N(0,θ)
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Computational approach

• Explore the full K+1-dimensional posterior:

• Single-component MCMC scheme:
– Gibbs update for θ: sample from full conditional p(θ|c)
– Random-walk Metropolis updates for c
– Cholesky factorization Σ = LLT for grid-based case; m = Lz

• Numerical details
– Nystrom method to solve integral equation for λi and φi(x)
– Explicit RKC scheme for deterministic and stochastic forward problems

• Solve inverse problem in three ways: (1) grid-based, p(zn,θ |d);
(2) K-L, p(cK,θ |d); (3) K-L + PCe, p(ξΚ,θ |d)
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Bayesian inversion

• Invert for log-diffusivity profile (13 sensors, ≈ 10% noise)

grid-based inversion — target randomly drawn from GP

mean, stdev, realizations median, quantiles, true profile



Bayesian inversion

• Invert for log-diffusivity profile (13 sensors, ≈10% noise)

grid-based inversion — sinusoidal target

mean, stdev, realizations median, quantiles, true profile



Dimensionality reduction

• Invert for log-diffusivity profile (13 sensors, ≈10% noise):

grid-based 4 K-L modes



Dimensionality reduction

• Invert for log-diffusivity profile (13 sensors, ≈10% noise):

grid-based 6 K-L modes



Dimensionality reduction

• Invert for log-diffusivity profile (13 sensors, ≈10% noise):

grid-based 8 K-L modes



K-L based inversion

• Posterior marginals of the scaled KL mode strengths, p(λ1/2 ci | d):

c1 c2 c3 c7 c8 c9c4 c5 c6 c10



• Invert for log-diffusivity profile (13 sensors, ≈10% noise):

Contours of posterior covariance, C(x1,x2), random-draw target
solid = 49 grid points; dashed = 8 K-L modes

K-L based inversion



• 1-D & 2-D posterior marginals of the KL mode strengths, p(ci|d):

K-L based inversion



• Limiting behavior of higher-order modes

c6 c8
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K-L based inversion



• Coarsen the data (same msmnt times and noise level):

13 sensors 2 sensors—
only at the boundaries

posterior for sinusoidal target

K-L based inversion



• Posterior marginals of the KL mode strengths, p(ci|d), and p(θ|d):

13 sensors 2 sensors

K-L based inversion



• Posterior distributions p(ci|d,θ) with coarser data:

c6, 13 sensors c6, 2 sensors
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K-L based inversion



• Further step—accelerate with PCe:
→ put ci = ϖξi, i = 1…K, and solve the stochastic forward problem once

• MCMC sampling from the surrogate posterior:

PCe + KL-based inversion
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• Further step—accelerate with PCe:
→ put ci = ϖξi, i = 1…K, and solve the stochastic forward problem once

• MCMC sampling from the surrogate posterior:

grid-based, direct forward evals 6 K-L modes, p=4

PCe + KL-based inversion



PCe + KL-based inversion

6 KL modes, 4th-order PCe

• Computational times for this
example:
(200K posterior samples)
– solution on grid, direct MCMC

sampling: 45885 s
– 6 KL modes, direct MCMC

sampling: 6418 s
– 6 KL modes + polynomial

chaos: 248 s



Conclusions

• Stochastic spectral methods for Bayesian inference
– Efficient propagation of prior uncertainty through the forward model
– Change of variables; rapid sampling of the surrogate posterior
– Inference of spatial fields, with dimensionality reduction (basis from GP

prior)
– Enabling Bayesian inference with realistic physical models

• Extensions and ongoing work
– Larger-scale problems, complex dynamical systems— depends on

advances in spectral UQ:
• Parallelism (partitioning prior support)
• Multi-wavelet approaches
• Adaptive sparse truncation of PC bases
• Sparse quadrature for high-dimensional problems (non-intrusive)

– Incorporating flexible high-performance simulation frameworks
(e.g., Nihilo/Sundance, with B. van Bloemen Waanders)




